翻訳と辞書
Words near each other
・ Chevalier Jackson
・ Chevalier Medal for Oriental Art
・ Chevalier Michael
・ Chevalier O'Gorman
・ Chevalier Paul
・ Chevalier Saint-George
・ Chevalier Sivaji Ganesan Award for Excellence in Indian Cinema
・ Chevalier-Montrachet
・ Chevalierella
・ Chevalierella elaeidis
・ Chevaline
・ Chevaline (disambiguation)
・ Chevaline Re-entry Body
・ Chevaline, Haute-Savoie
・ Chevallet fracture
Chevalley basis
・ Chevalley scheme
・ Chevalley theorem
・ Chevalley's structure theorem
・ Chevalley–Iwahori–Nagata theorem
・ Chevalley–Shephard–Todd theorem
・ Chevalley–Warning theorem
・ Chevallier
・ Chevallier (crater)
・ Chevalliers of Aspall Hall
・ Chevallum, Queensland
・ Chevanceaux
・ Chevandré van Schoor
・ Chevani
・ Chevannay


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chevalley basis : ウィキペディア英語版
Chevalley basis
In mathematics, a Chevalley basis for a simple complex Lie algebra is
a basis constructed by Claude Chevalley with the property that all structure constants are integers. Chevalley used these bases to construct analogues of Lie groups over finite fields, called Chevalley groups.
The generators of a Lie group are split into the generators ''H'' and ''E'' indexed by simple roots and their negatives \pm\alpha_i. The relations among the generators are the following:
:()=0
:()=\alpha_j(H_) E_
:() = H_
:()=\pm(p+1)E_
where in the last relation p is the greatest positive integer such that \gamma -p\beta is a root and we consider E_ = 0 if \beta + \gamma is not a root.
For determining the sign in the last relation one fixes an ordering of roots which respects addition, i.e., if \beta \prec \gamma then \beta + \alpha \prec \gamma + \alpha provided that all four are roots. We then call (\beta, \gamma) an extraspecial pair of roots if they are both positive and \beta is minimal among all \beta_0 that occur in pairs of positive roots (\beta_0, \gamma_0) satisfying \beta_0 + \gamma_0 = \beta + \gamma. The sign in the last relation can be chosen arbitrarily whenever (\beta, \gamma) is an extraspecial pair of roots. This then determines the signs for all remaining pairs of roots.
==References==

*''Simple Groups of Lie Type'' by Roger W. Carter, ISBN 0-471-50683-4


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chevalley basis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.